B.Tech III Year II Semester

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS) PULIVENDULA 19AEE63- SWITCHGEAR AND PROTECTION

L T P C 3 0 0 3

Course Objectives: The objectives of the course are to make the students learn about

- The technical aspects involved in the operation of circuit breaker
- The different types of electromagnetic relays and microprocessor based relays
- The protection of Generators
- The protection of Transformers
- The protection of feeders and lines
- Generation of over voltages and protection from them

UNIT - I: FUSES AND CIRCUIT BREAKERS

10 Hrs

Fuses: Definitions, characteristics, types, HRC fuses.

Circuit Breakers: Elementary Principles of Arc Interruption, Re-striking Voltage and Recovery Voltage – Re-striking Phenomenon, Average and Max. RRRV, Current Chopping and Resistance Switching - CB Ratings and Specifications: Types and Numerical Problems. – Auto Re-closures. Minimum Oil Circuit Breakers, Air Blast Circuit Breakers, Vacuum and SF6 Circuit Breakers.

Learning Outcomes:

At the end of this unit, the student will be able to

• Learn about different types of fuses and circuit breakers

L1

• Learn about arc ionization and deionization

L2

UNIT - II: RELAYS

10 Hrs

Electromagnetic Relays - Basic Requirements of Relays - Primary and Backup Protection - Construction Details of - Attracted Armature, Balanced Beam, Inductor Type and Differential Relays - Universal Torque Equation - Characteristics of Over Current, Direction and Distance Relays. Static Relays - Advantages and Disadvantages - Definite Time, Inverse and IDMT. Static Relays - Comparators - Amplitude and Phase Comparators. Microprocessor Based Relays - Advantages and Disadvantages - Block Diagram for Over Current (Definite, Inverse and IDMT) and Distance Relays and Their Flow Charts. Basics of Digital / Numerical Relays.

Learning Outcomes:

At the end of this unit, the student will be able to

• Learn about basic principle of relay operation

L1

• Learn about all types of relays

L2

UNIT - III: PROTECTION OF GENERATORS & TRANSFORMERS

10 Hrs

Protection of Generators against Stator Faults, Rotor Faults and Abnormal Conditions. Restricted Earth Fault and Inter-Turn Fault Protection – calculation of percentage winding unprotected. Protection of Transformers: Percentage Differential Protection, Numerical Problems on Design of CT Ratio, Buchholz Relay Protection, Numerical Problems.

Learning Outcomes:

At the end of this unit, the student will be able to

• Learn about total protection of generator and transformer

L1

• learn about concepts of protection with numerical analysis

L2

UNIT - IV: PROTECTION OF FEEDERS & LINES

10 Hrs

Protection of Feeder (Radial & Ring Main) Using Over Current Relays. Protection of Transmission Line – 3 Zone Protection Using Distance Relays. Carrier Current Protection. Protection of Bus Bars.

Electrical and Electronics Engineering	R19
Learning Outcomes:	
At the end of this unit, the student will be able to	
 Learn about total protection of FEEDERS & LINES 	L1
 learn about concepts of protection with numerical analysis 	L2
UNIT – V: OVER VOLTAGES IN POWER SYSTEMS	10 Hrs
Generation of Over Voltages in Power Systems-Protection against Lightning over Voltage Type and Zinc-Oxide Lighting Arresters - Insulation Coordination —BIL.	es - Valve
Learning Outcomes:	
At the end of this unit, the student will be able to	T 4
Understand the generation of over voltages in power system and its protection	L1
Understand the basic insulation coordination	L2
Text Books:	
 Power System Protection and Switchgear, Badri Ram, D.N Viswakarma, TMH Publication Switchgear and Protection, Sunil S Rao, Khanna Publishers, 1992. 	ıs, 2011.
Reference Books:	
 Electrical Power Systems, C.L. Wadhwa, New Age international (P) Limited, Publishers, 2 Transmission network Protection, Y.G. Paithankar, Taylor and Francis, 2009 	012.
3. Power system protection and switch gear, BhuvaneshOza, TMH, 2010.	
Course Outcomes:	
At the end of this Course the student will be able to	
 Solve numerical problems for arc interruption and recovery in circuit breakers 	L1
 Distinguish between the principles of operation of electromagnetic relays, static reand microprocessor based relays 	elays L2
 Determine the unprotected percentage of generator and transformer winding under occurrence 	fault L3
 Identify various types of the relays in protecting feeders, lines and bus bars 	L4
 Demonstrate the protection of a power system from over voltages 	L5

